Armored Fiber Optic Cable E-ZEE Order Grid

Learn about the different types of Armored Fiber Optic Cables and Order Here

Fiber Cable Bulk Chart

Description (PVC) PVC (IOR) I/O Riser (PL) Plenum (IOP) I/O Plenum (OSP) PE/OSP (LSZH) (TAC) PU/HDTPE
One Tube Simplex 2.0mm SM SM1-A2-PVC SM1-A2-IOR SM1-A2-PL SM1-A2-IOP SM1-A2-OSP SM1-A2-LSZH SM1-A2-TAC
One Tube Simplex 2.0mm MM 62.5/125 MM1-M1-PVC MM1-M1-IOR MM1-M1-PL MM1-M1-IOP MM1-M1-OSP MM1-M1-LSZH MM1-M1-TAC
One Tube Simplex 2.0mm MM 50/126 MM1-M2-PVC MM1-M2-IOR MM1-M2-PL MM1-M2-IOP MM1-M2-OSP MM1-M2-LSZH MM1-M2-TAC
One Tube Simplex 2.0mm OM3-300 MM1-M3-PVC MM1-M3-IOR MM1-M3-PL MM1-M3-IOP MM1-M3-OSP MM1-M3-LSZH MM1-M3-TAC
One Tube Simplex 2.0mm OM4 MM1-M4-PVC MM1-M4-IOR MM1-M4-PL MM1-M4-IOP MM1-M4-OSP MM1-M4-LSZH MM1-M4-TAC
One Tube Simplex 2.0mm OM5 MM1-M5-PVC MM1-M5-IOR MM1-M5-PL MM1-M5-IOP MM1-M5-OSP MM1-M5-LSZH MM1-M5-TAC
3.0mm empty tube with jacket SM0-3.0-PVC SM0-3.0-IOR SM0-3.0-PL SM0-3.0-IOP SM0-3.0-OSP SM0-3.0-LSZH SM0-3.0-TAC
One Tube Duplex 3.0mm SM SM2-A2-PVC SM2-A2-IOR SM2-A2-PL SM2-A2-IOP SM2-A2-OSP SM2-A2-LSZH SM2-A2-TAC
One Tube Duplex 3.0mm MM 62.5/125 MM2-M1-PVC MM2-M1-IOR MM2-M1-PL MM2-M1-IOP MM2-M1-OSP MM2-M1-LSZH MM2-M1-TAC
One Tube Duplex 3.0mm MM 50/125 MM2-M2-PVC MM2-M2-IOR MM2-M2-PL MM2-M2-IOP MM2-M2-OSP MM2-M2-LSZH MM2-M2-TAC
One Tube Duplex 3.0mm OM3-300 MM2-M3-PVC MM2-M3-IOR MM2-M3-PL MM2-M3-IOP MM2-M3-OSP MM2-M3-LSZH MM2-M3-TAC
One Tube Duplex 3.0mm OM4 MM2-M4-PVC MM2-M4-IOR MM2-M4-PL MM2-M4-IOP MM2-M4-OSP MM2-M4-LSZH MM2-M4-TAC
One Tube Duplex 3.0mm OM5 MM2-M5-PVC MM2-M5-IOR MM2-M5-PL MM2-M5-IOP MM2-M5-OSP MM2-M5-LSZH MM2-M5-TAC
ZIP Duplex 2x3.0mm SM SM2Z-A2-PVC SM2Z-A2-IOR SM2Z-A2-PL SM2Z-A2-IOP SM2Z-A2-OSP SM2Z-A2-LSZH SM2Z-A2-TAC
ZIP Duplex 2x3.0mm MM 62.5/125 MM2Z-M1-PVC MM2Z-M1-IOR MM2Z-M1-PL MM2Z-M1-IOP MM2Z-M1-OSP MM2Z-M1-LSZH MM2Z-M1-TAC
ZIP Duplex 2x3.0mm MM 50/126 MM2Z-M2-PVC MM2Z-M2-IOR MM2Z-M2-PL MM2Z-M2-IOP MM2Z-M2-OSP MM2Z-M2-LSZH MM2Z-M2-TAC
ZIP Duplex 2x3.0mm OM3-300 MM2Z-M3-PVC MM2Z-M3-IOR MM2Z-M3-PL MM2Z-M3-IOP MM2Z-M3-OSP MM2Z-M3-LSZH MM2Z-M3-TAC
ZIP Duplex 2x3.0mm OM4 MM2Z-M4-PVC MM2Z-M4-IOR MM2Z-M4-PL MM2Z-M4-IOP MM2Z-M4-OSP MM2Z-M4-LSZH MM2Z-M4-TAC
ZIP Duplex 2x3.0mm OM5 MM2Z-M5-PVC MM2Z-M5-IOR MM2Z-M5-PL MM2Z-M5-IOP MM2Z-M5-OSP MM2Z-M5-LSZH MM2Z-M5-TAC
2F 900um MM MM2T-M3-PVC MM2T-M3-IOR MM2T-M3-PL MM2T-M3-IOP MM2T-M3-OSP MM2T-M3-LSZH MM2T-M3-TAC
4F 900um SM 4.5mm SM4T-A2-PVC SM4T-A2-IOR SM4T-A2-PL SM4T-A2-IOP SM4T-A2-OSP SM4T-A2-LSZH SM4T-A2-TAC
4F 900um MM 62.5/125 4.5mm MM4T-M1-PVC MM4T-M1-IOR MM4T-M1-PL MM4T-M1-IOP MM4T-M1-OSP MM4T-M1-LSZH MM4T-M1-TAC
4F 900um MM 50/125 4.5mm MM4T-M2-PVC MM4T-M2-IOR MM4T-M2-PL MM4T-M2-IOP MM4T-M2-OSP MM4T-M2-LSZH MM4T-M2-TAC
4F 900um OM3-300 4.5mm MM4T-M3-PVC MM4T-M3-IOR MM4T-M3-PL MM4T-M3-IOP MM4T-M3-OSP MM4T-M3-LSZH MM4T-M3-TAC
4F 900um OM4 4.5mm MM4T-M4-PVC MM4T-M4-IOR MM4T-M4-PL MM4T-M4-IOP MM4T-M4-OSP MM4T-M4-LSZH MM4T-M4-TAC
4F 900um OM5 4.5mm MM4T-M5-PVC MM4T-M5-IOR MM4T-M5-PL MM4T-M5-IOP MM4T-M5-OSP MM4T-M5-LSZH MM4T-M5-TAC
6F 900um SM 6.0mm SM6T-A2-PVC SM6T-A2-IOR SM6T-A2-PL SM6T-A2-IOP SM6T-A2-OSP SM6T-A2-LSZH SM6T-A2-TAC
6F 900um MM 62.5/125 6.0mm MM6T-M1-PVC MM6T-M1-IOR MM6T-M1-PL MM6T-M1-IOP MM6T-M1-OSP MM6T-M1-LSZH MM6T-M1-TAC
6F 900um MM 50/126 6.0mm MM6T-M2-PVC MM6T-M2-IOR MM6T-M2-PL MM6T-M2-IOP MM6T-M2-OSP MM6T-M2-LSZH MM6T-M2-TAC
6F 900um OM3-300 6.0mm MM6T-M3-PVC MM6T-M3-IOR MM6T-M3-PL MM6T-M3-IOP MM6T-M3-OSP MM6T-M3-LSZH MM6T-M3-TAC
6F 900um OM4 6.0mm MM6T-M4-PVC MM6T-M4-IOR MM6T-M4-PL MM6T-M4-IOP MM6T-M4-OSP MM6T-M4-LSZH MM6T-M4-TAC
6F 900um OM5 6.0mm MM6T-M5-PVC MM6T-M5-IOR MM6T-M5-PL MM6T-M5-IOP MM6T-M5-OSP MM6T-M5-LSZH MM6T-M5-TAC
6F 250um SM 3.0mm SM6L-A2-PVC SM6L-A2-IOR SM6L-A2-PL SM6L-A2-IOP SM6L-A2-OSP SM6L-A2-LSZH SM6L-A2-TAC
6F 250um MM 62.5/125 3.0mm MM6L-M1-PVC MM6L-M1-IOR MM6L-M1-PL MM6L-M1-IOP MM6L-M1-OSP MM6L-M1-LSZH MM6L-M1-TAC
6F 250um MM 50/125 3.0mm MM6L-M2-PVC MM6L-M2-IOR MM6L-M2-PL MM6L-M2-IOP MM6L-M2-OSP MM6L-M2-LSZH MM6L-M2-TAC
6F 250um OM3-300 3.0mm MM6L-M3-PVC MM6L-M3-IOR MM6L-M3-PL MM6L-M3-IOP MM6L-M3-OSP MM6L-M3-LSZH MM6L-M3-TAC
6F 250um OM4 3.0mm MM6L-M4-PVC MM6L-M4-IOR MM6L-M4-PL MM6L-M4-IOP MM6L-M4-OSP MM6L-M4-LSZH MM6L-M4-TAC
6F 250um OM5 3.0mm MM6L-M5-PVC MM6L-M5-IOR MM6L-M5-PL MM6L-M5-IOP MM6L-M5-OSP MM6L-M5-LSZH MM6L-M5-TAC
12F 250um SM 5.5mm SM12L-A2-PVC SM12L-A2-IOR SM12L-A2-PL SM12L-A2-IOP SM12L-A2-OSP SM12L-A2-LSZH SM12L-A2-TAC
12F 250um MM 62.5/125 5.5mm MM12L-M1-PVC MM12L-M1-IOR MM12L-M1-PL MM12L-M1-IOP MM12L-M1-OSP MM12L-M1-LSZH MM12L-M1-TAC
12F 250um MM 50/125 5.5mm MM12L-M2-PVC MM12L-M2-IOR MM12L-M2-PL MM12L-M2-IOP MM12L-M2-OSP MM12L-M2-LSZH MM12L-M2-TAC
12F 250um OM3-300 5.5mm MM12L-M3-PVC MM12L-M3-IOR MM12L-M3-PL MM12L-M3-IOP MM12L-M3-OSP MM12L-M3-LSZH MM12L-M3-PU
12F 250um OM4 5.5mm MM12L-M4-PVC MM12L-M4-IOR MM12L-M4-PL MM12L-M4-IOP MM12L-M4-OSP MM12L-M4-LSZH MM12L-M4-TAC
12F 250um OM5 5.5mm MM12L-M5-PVC MM12L-M5-IOR MM12L-M5-PL MM12L-M5-IOP MM12L-M5-OSP MM12L-M5-LSZH MM12L-M5-TAC
12F 900um SM 8.0mm SM12T-A2-PVC SM12T-A2-IOR SM12T-A2-PL SM12T-A2-IOP SM12T-A2-OSP SM12T-A2-LSZH SM12T-A2-TAC
12F 900um MM 62.5/125 8.0mm MM12T-M1-PVC MM12T-M1-IOR MM12T-M1-PL MM12T-M1-IOP MM12T-M1-OSP MM12T-M1-LSZH MM12T-M1-TAC
12F 900um MM 50/125 8.0mm MM12T-M2-PVC MM12T-M2-IOR MM12T-M2-PL MM12T-M2-IOP MM12T-M2-OSP MM12T-M2-LSZH MM12T-M2-TAC
12F 900um OM3 8.0mm MM12T-M3-PVC MM12T-M3-IOR MM12T-M3-PL MM12T-M3-IOP MM12T-M3-OSP MM12T-M3-LSZH MM12T-M3-TAC
12F RIBBON OM3 8.0MM MM12R-M3-PVC MM12R-M3-IOR MM12R-M3-PL MM12R-M3-IOP MM12R-M3-OSP MM12R-M3-LSZH MM12R-M3-TAC
12F 900um OM4 8.0mm MM12T-M4-PVC MM12T-M4-IOR MM12T-M4-PL MM12T-M4-IOP MM12T-M4-OSP MM12T-M4-LSZH MM12T-M4-TAC
12F 900um OM5 8.0mm MM12T-M5-PVC MM12T-M5-IOR MM12T-M5-PL MM12T-M5-IOP MM12T-M5-OSP MM12T-M5-LSZH MM12T-M5-TAC
12F 250um SM 3.0mm SM12M-A2-PVC SM12M-A2-IOR SM12M-A2-PL SM12M-A2-IOP SM12M-A2-OSP SM12M-A2-LSZH SM12M-A2-TAC
12F 250um MM 62.5/125 3.0mm MM12M-M1-PVC MM12M-M1-IOR MM12M-M1-PL MM12M-M1-IOP MM12M-M1-OSP MM12M-M1-LSZH MM12M-M1-TAC
12F 250um MM 50/125 3.0mm MM12M-M2-PVC MM12M-M2-IOR MM12M-M2-PL MM12M-M2-IOP MM12M-M2-OSP MM12M-M2-LSZH MM12M-M2-TAC
12F 250um OM3-300 3.0mm MM12L-M3-PVC MM12M-M3-IOR MM12L-M3-PL MM12L-M3-IOP MM12M-M3-OSP MM12L-M3-LSZH MM12M-M3-TAC
12F 250um OM4 3.0mm MM12M-M4-PVC MM12M-M4-IOR MM12M-M4-PL MM12M-M4-IOP MM12M-M4-OSP MM12M-M4-LSZH MM12M-M4-TAC
12F 250um OM5 3.0mm MM12M-M5-PVC MM12M-M5-IOR MM12M-M5-PL MM12M-M5-IOP MM12M-51-OSP MM12M-M5-LSZH MM12M-M5-TAC
24F 250um SM 6.0mm SM24L-A2-PVC SM24L-A2-IOR SM24L-A2-PL SM24L-A2-IOP SM24L-A2-OSP SM24L-A2-LSZH SM24L-A2-TAC
24F 250um MM 62.5/125 6.0mm MM24L-M1-PVC MM24L-M1-IOR MM24L-M1-PL MM24L-M1-IOP MM24L-M1-OSP MM24L-M1-LSZH MM24L-M1-TAC
24F 250um MM 50/125 6.0mm MM24L-M2-PVC MM24L-M2-IOR MM24L-M2-PL MM24L-M2-IOP MM24L-M2-OSP MM24L-M2-LSZH MM24L-M2-TAC
24F 250um OM3-300 6.0mm MM24L-M3-PVC MM24L-M3-IOR MM24L-M3-PL MM24L-M3-IOP MM24L-M3-OSP MM24L-M3-LSZH MM24L-M3-TAC
24F RIBBON OM3-300 6.0mm MM24R-M3-PVC MM24R-M3-IOR MM24R-M3-PL MM24R-M3-IOP MM24R-M3-OSP MM24R-M3-LSZH MM24R-M3-TAC
24F 250um OM4 6.0mm MM24L-M4-PVC MM24L-M4-IOR MM24L-M4-PL MM24L-M4-IOP MM24L-M4-OSP MM24L-M4-LSZH MM24L-M4-TAC
24F 250um OM5 6.0mm MM24L-M5-PVC MM24L-M5-IOR MM24L-M5-PL MM24L-M5-IOP MM24L-M5-OSP MM24L-M5-LSZH MM24L-M5-TAC
24F 900um SM OD:12mm SM24T-A2-PVC SM24T-A2-IOR SM24T-A2-PL SM24T-A2-IOP SM24T-A2-OSP SM24T-A2-LSZH SM24T-A2-TAC
24F 900um MM 62.5/125 OD:12mm MM24T-M1-PVC MM24T-M1-IOR MM24T-M1-PL MM24T-M1-IOP MM24T-M1-OSP MM24T-M1-LSZH MM24T-M1-TAC
24F 900um MM 50/125 OD:12mm MM24T-M2-PVC MM24T-M2-IOR MM24T-M2-PL MM24T-M2-IOP MM24T-M2-OSP MM24T-M2-LSZH MM24T-M2-TAC
24F 900um OM3-300 OD: 12mm MM24T-M3-PVC MM24T-M3-IOR MM24T-M3-PL MM24T-M3-IOP MM24T-M3-OSP MM24T-M3-LSZH MM24T-M3-TAC
24F 900um OM4 OD: 12mm MM24T-M4-PVC MM24T-M4-IOR MM24T-M4-PL MM24T-M4-IOP MM24T-M4-OSP MM24T-M4-LSZH MM24T-M4-TAC
24F 900um OM5 OD: 12mm MM24T-M5-PVC MM24T-M5-IOR MM24T-M5-PL MM24T-M5-IOP MM24T-M5-OSP MM24T-M5-LSZH MM24T-M5-TAC
36F 250um OM3 MM36L-M3-PVC MM36L-M3-PL MM36L-M3-PL MM36L-M3-IOP MM36L-M3-OSP MM36L-M3-LSZH MM36L-M3-TAC
36F 250um OM3 RIBBON MM36R-M3-PVC MM36R-M3-PL MM36R-M3-PL MM36R-M3-IOP MM36R-M3-OSP MM36R-M3-LSZH MM36R-M3-TAC
48F 250um SM OD:10.5mm SM48L-A2-PVC SM48L-A2-IOR SM48L-A2-PL SM48L-A2-IOP SM48L-A2-OSP SM48L-A2-LSZH SM48L-A2-TAC
48F 250um MM 62.5/125 OD:10.5mm MM48L-M1-PVC MM48L-M1-IOR MM48L-M1-PL MM48L-M1-IOP MM48L-M1-OSP MM48L-M1-LSZH MM48L-M1-TAC
48F 250um MM 50/125 OD:10.5mm MM48L-M2-PVC MM48L-M2-IOR MM48L-M2-PL MM48L-M2-IOP MM48L-M2-OSP MM48L-M2-LSZH MM48L-M2-TAC
48F 250um OM3-300 OD:10.5mm MM48L-M3-PVC MM48L-M3-IOR MM48L-M3-PL MM48L-M3-IOP MM48L-M3-OSP MM48L-M3-LSZH MM48L-M3-TAC
48F RIBBON OM3-300 OD:10.5MM MM48R-M3-PVC MM48R-M3-IOR MM48R-M3-PL MM48R-M3-IOP MM48R-M3-OSP MM48R-M3-LSZH MM48R-M3-TAC
48F 250um OM4 OD:10.5mm MM48L-M4-PVC MM48L-M4-IOR MM48L-M4-PL MM48L-M4-IOP MM48L-M4-OSP MM48L-M4-LSZH MM48L-M4-TAC
48F 250um OM5 OD:10.5mm MM48L-M5-PVC MM48L-M5-IOR MM48L-M5-PL MM48L-M5-IOP MM48L-M5-OSP MM48L-M5-LSZH MM48L-M5-TAC
72F 250um OM3 MM72L-M3-PVC MM72L-M3-IOR MM72L-M3-PL MM72L-M3-IOP MM72L-M3-OSP MM72L-M3-LSZH MM72L-M3-TAC
72F 250um RIBBON MM72R-M3-PVC MM72R-M3-IOR MM72R-M3-PL MM72R-M3-IOP MM72R-M3-OSP MM72R-M3-LSZH MM72R-M3-TAC
96F 250um SM OD:12mm SM96L-A2-PVC SM96L-A2-IOR SM96L-A2-PL SM96L-A2-IOP SM96L-A2-OSP SM96L-A2-LSZH SM96L-A2-TAC
96F 250um MM 62.5/125 OD:12mm MM96L-M1-PVC MM96L-M1-IOR MM96L-M1-PL MM96L-M1-IOP MM96L-M1-OSP MM96L-M1-LSZH MM96L-M1-TAC
96F 250um MM 50/125 OD:12mm MM96L-M2-PVC MM96L-M2-IOR MM96L-M2-PL MM96L-M2-IOP MM96L-M2-OSP MM96L-M2-LSZH MM96L-M2-TAC
96F 250um OM3-300 OD:12mm MM96L-M3-PVC MM96L-M3-IOR MM96L-M3-PL MM96L-M3-IOP MM96L-M3-OSP MM96L-M3-LSZH MM96L-M3-TAC
96F 250um OM4 OD:12mm MM96L-M4-PVC MM96L-M4-IOR MM96L-M4-PL MM96L-M4-IOP MM96L-M4-OSP MM96L-M4-LSZH MM96L-M4-TAC
96F 250um OM5 OD:12mm MM96L-M5-PVC MM96L-M5-IOR MM96L-M5-PL MM96L-M5-IOP MM96L-M5-OSP MM96L-M5-LSZH MM96L-M5-TAC
144F 250um SM OD:13.5mm SM144L-A2-PVC SM144L-A2-IOR SM144L-A2-PL SM144L-A2-IOP SM144L-A2-OSP SM144L-A2-LSZH SM144L-A2-TAC
144F 250um MM 62.5/125 OD:13.5mm MM144L-M1-PVC MM144L-M1-IOR MM144L-M1-PL MM144L-M1-IOP MM144L-M1-OSP MM144L-M1-LSZH MM144L-M1-TAC
144F 250um MM 50/125 OD:13.5mm MM144L-M2-PVC MM144L-M2-IOR MM144L-M2-PL MM144L-M2-IOP MM144L-M2-OSP MM144L-M2-LSZH MM144L-M2-TAC
144F 250um OM3-300 OD:13.5mm MM144L-M3-PVC MM144L-M3-IOR MM144L-M3-PL MM144L-M3-IOP MM144L-M3-OSP MM144L-M3-LSZH MM144L-M3-TAC
144F RIBBON OM3-300 OD 13.5MM MM144R-M3-PVC MM144R-M3-IOR MM144R-M3-PL MM144R-M3-IOP MM144R-M3-OSP MM144R-M3-LSZH MM144R-M3-TAC
144F 250um OM4 OD:13.5mm MM144L-M4-PVC MM144L-M4-IOR MM144L-M4-PL MM144L-M4-IOP MM144L-M4-OSP MM144L-M4-LSZH MM144L-M4-TAC
144F 250um OM5 OD:13.5mm MM144L-M5-PSV MM144L-M5-IOR MM144L-M5-PL MM144L-M5-IOP MM144L-M5-OSP MM144L-M5-LSZH AF2-OM4-1M

Fiber Optic Cables and the Advantages Over Copper:

• SPEED: Fiber optic networks operate at high speeds – up into the gigabits
• BANDWIDTH: FIBER OPTIC CABLES have a large carrying capacity
• DISTANCE: Signals can be transmitted further without needing to be “refreshed” or strengthened.
• RESISTANCE: Greater resistance to electromagnetic noise such as radios, motors or other nearby cables.
• MAINTENANCE: Fiber optic cables costs much less to maintain.

Types of Fiber Optic Cables

There are three types of fiber optic cable: single mode, multimode and plastic optical fiber (POF).

Single Mode cable is a single stand of glass fiber with a diameter of 8.3 to 10 microns. (One micron is 1/250th the width of a human hair.)

Multimode cable is made of multiple strands of glass fibers, with a combined diameter in the 50-to-100 micron range. Each fiber in a multimode cable is capable of carrying a different signal independent from those on the other fibers in the cable bundle. POF is a newer plastic-based cable which promises performance similar to single mode cable, but at a lower cost.

Fiber optic cable functions as a “light guide,” guiding the light introduced at one end of the cable through to the other end. The light source can either be a light-emitting diode (LED)) or a laser.

The light source is pulsed on and off, and a light-sensitive receiver on the other end of the cable converts the pulses back into the digital ones and zeros of the original signal.

Even laser light shining through a fiber optic cable is subject to loss of strength, primarily through dispersion and scattering of the light, within the cable itself. The faster the laser fluctuates, the greater the risk of dispersion. Light strengtheners, called repeaters, may be necessary to refresh the signal in certain applications.

Fiber

by John MacChesney – Fellow at Bell Laboratories, Lucent Technologies

Some 10 billion digital bits can be transmitted per second along an optical fiber link in a commercial network, enough to carry tens of thousands of telephone calls. Hair-thin fibers consist of two concentric layers of high-purity silica glass the core and the cladding, which are enclosed by a protective sheath. Light rays modulated into digital pulses with a laser or a light-emitting diode move along the core without penetrating the cladding.

The light stays confined to the core because the cladding has a lower refractive index—a measure of its ability to bend light. Refinements in optical fibers, along with the development of new lasers and diodes, may one day allow commercial fiber-optic networks to carry trillions of bits of data per second.


 Total internal refection confines light within optical fibers (similar to looking down a mirror made in the shape of a long paper towel tube). Because the cladding has a lower refractive index, light rays reflect back into the core if they encounter the cladding at a shallow angle (red lines). A ray that exceeds a certain “critical” angle escapes from the fiber (yellow line).


STEP-INDEX MULTIMODE FIBER has a large core, up to 100 microns in diameter. As a result, some of the light rays that make up the digital pulse may travel a direct route, whereas others zigzag as they bounce off the cladding. These alternative pathways cause the different groupings of light rays, referred to as modes, to arrive separately at a receiving point. The pulse, an aggregate of different modes, begins to spread out, losing its well-defined shape. The need to leave spacing between pulses to prevent overlapping limits bandwidth that is, the amount of information that can be sent. Consequently, this type of fiber is best suited for transmission over short distances, in an endoscope, for instance.


GRADED-INDEX MULTIMODE FIBER contains a core in which the refractive index diminishes gradually from the center axis out toward the cladding. The higher refractive index at the center makes the light rays moving down the axis advance more slowly than those near the cladding. Also, rather than zig-zagging off the cladding, light in the core curves helically because of the graded index, reducing its travel distance. The shortened path and the higher speed allow light at the periphery to arrive at a receiver at about the same time as the slow but straight rays in the core axis. The result: a digital pulse suffers less dispersion. These fibers often become the physical medium for local-area networks


SINGLE-MODE FIBER has a narrow core (eight microns or less), and the index of refraction between the core and the cladding changes less than it does for multimode fibers. Light thus travels parallel to the axis, creating little pulse dispersion. Telephone and cable television networks install millions of kilometers of this fiber every year.


BASIC CABLE DESIGN

1 – Two basic cable designs are:

Loose-tube cable, used in the majority of outside-plant installations in North America, and tight-buffered cable, primarily used inside buildings.

The modular design of loose-tube cables typically holds up to 12 fibers per buffer tube with a maximum per cable fiber count of more than 200 fibers. Loose-tube cables can be all-dielectric or optionally armored. The modular buffer-tube design permits easy drop-off of groups of fibers at intermediate points, without interfering with other protected buffer tubes being routed to other locations. The loose-tube design also helps in the identification and administration of fibers in the system.

Single-fiber tight-buffered cables are used ase pigtails, patch cords and jumpers to terminate loose-tube cables directly into opto-electronic transmitters, receivers and other active and passive components.

Multi-fiber tight-buffered cables also are available and are used primarily for alternative routing and handling flexibility and ease within buildings.

2 – Loose-Tube Cable

In a loose-tube cable design, color-coded plastic buffer tubes house and protect optical fibers. A gel filling compound impedes water penetration. Excess fiber length (relative to buffer tube length) insulates fibers from stresses of installation and environmental loading. Buffer tubes are stranded around a dielectric or steel central member, which serves as an anti-buckling element.

The cable core, typically surrounded by aramid yarn, is the primary tensile strength member. The outer polyethylene jacket is extruded over the core. If armoring is required, a corrugated steel tape is formed around a single jacketed cable with an additional jacket extruded over the armor.

Loose-tube cables typically are used for outside-plant installation in aerial, duct and direct-buried applications.

3 – Tight-Buffered Cable

With tight-buffered cable designs, the buffering material is in direct contat with the fiber. This design is suited for “jumper cables” which connect outside plant cables to terminal equipment, and also for linking various devices in a premises network.

Multi-fiber, tight-buffered cables often are used for intra-building, risers, general building and plenum applications.

The tight-buffered design provides a rugged cable structure to protect individual fibers during handling, routing and connectorization. Yarn strength members keep the tensile load away from the fiber.

As with loose-tube cables, optical specifications for tight-buffered cables also should include the maximum performance of all fibers over the operating temperature range and life of the cable. Averages should not be acceptable.


Fiber Cable over view by Black Box 

Over the past few years, fiber optic cable has become more affordable. It’s now used for dozens of applications that require complete immunity to electrical interference. Fiber is ideal for high data-rate systems such as FDDI, multimedia, ATM, or any other network that requires the transfer of large, time-consuming data files.  

Other advantages of fiber optic cable over copper include:

 * Greater distance-You can run fiber as far as several kilometers. ? Low attenuation-The light signals meet little resistance, so data can travel farther.

* Security-Taps in fiber optic cable are easy to detect. If tapped, the cable leaks light, causing the entire system to fail.

* Greater bandwidth-Fiber can carry more data than copper. ? Immunity-Fiber optics are immune to interference.

 What is the difference Singlemode or Multimode?

 Singlemode fiber gives you a higher transmission rate and up to 50 times more distance than multimode, but it also costs more. Single-mode fiber has a much smaller core than multimode fiber-typically 5 to 10 microns. Only a single lightwave can be transmitted at a given time. The small core and single lightwave virtually eliminate any distortion that could result from overlapping light pulses, providing the least signal attenuation and the highest transmission speeds of any fiber cable type.

Multimode fiber gives you high bandwidth at high speeds over long distances. Lightwaves are dispersed into numerous paths, or modes, as they travel through the cable’s core. Typical multimode fiber core diameters are 50, 62.5, and 100 micrometers. However, in long cable runs (greater than 3000 feet [914.4 ml), multiple paths of light can cause signal distortion at the receiving end, resulting in an unclear and incomplete data transmission.

 Testing and certifying fiber optic cable.

If you’re used to certifying Category 5 cable, you’ll be pleasantly surprised at how easy it is to certify fiber optic cable since if s immune to electrical interference. You only need to check a few measurements:

 ? Attenuation (or decibel loss)-Measured in dB/km, this is the decrease of signal strength as it travels through the fiber optic cable. ? Return loss-The amount of light reflected from the far end of the cable back to the source. The lower the number, the better. For example, a reading of -60 dB is better than -20 dB.

? Graded refractive index-Measures how much light is sent down the fiber. This is commonly measured at wavelengths of 850 and 1300 nanometers. Compared to other operating frequencies, these two ranges yield the lowest intrinsic power loss. (NOTE This is valid for multimode fiber only.)

? Propagation delay-This is the time it takes a signal to travel from one point to another over a transmission channel.  

? Time-domain reflectometry (TDR)-Transmits high-frequency pulses onto a cable so you can examine the reflections along the cable and isolate faults.  

There are many fiber optic testers on the market today. Basic fiber optic testers function by shining a light down one end of the cable. At the other end, there’s a receiver calibrated to the strength of the light source. With this test, you can measure how much light is going to the other end of the cable. Generally, these testers give you the results in decibels (dB) lost, which you then compare to the loss budget. If the measured loss is less than the number calculated by your loss budget, your installation is good.

Newer fiber optic testers have a broad range of capabilities. They can test both 850- and 1300-nm signals at the same time and can even check your Gable for compliance with specific standards.  

When to choose fiber optic.

Although fiber optic cable is still more expensive than other types of cable, it’s favored for today’s high-speed data communications because it eliminates the problems of twisted-pair cable, such as near-end crosstalk (NEXT), electromagnetic interference (EIVII), and security breaches.


Fiber optic cable consists of a core, cladding, coating, strengthening fibers, and cable jacket (see above). 


Core 
-This is the physical medium that transports optical data signals from an attached light source to a receiving device. The core is a single continuous strand of glass or plastic that’s measured (in microns) by the size of its outer diameter. The larger the core, the more light the cable can carry. All fiber optic cable is sized according to its core diameter. The three sizes most commonly available are 50-, 62.5-, and 1 00-micron Gable.

 Cladding -This is a thin layer that surrounds the fiber core and serves as a boundary that contains the light waves and causes the refraction, enabling data to travel throughout the length of the fiber segment.

Coating -This is a layer of plastic that surrounds the core and cladding to reinforce the fiber core, help absorb shocks, and provide extra protection against excessive cable bends. These buffer coatings are measured in microns (p) and can range from 250 p to 900 p.

Strengthening fibers -These components help protect the core against crushing forces and excessive tension during installation. The materials can range from Kevlat4 to wire strands to gel-filled sleeves.

Cable jacket -This is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some may be black or yellow.

Visit www.fiber.repair For Fiber Repair

Fiber Cassette Trays

Shopping Cart